Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans

نویسندگان

  • Jeeyong Lee
  • Kwang-Youl Kim
  • Young-Ki Paik
چکیده

Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian G(o) and G(q) homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A common muscarinic pathway for diapause recovery in the distantly related nematode species Caenorhabditis elegans and Ancylostoma caninum.

Converging TGF-beta and insulin-like neuroendocrine signaling pathways regulate whether Caenorhabditis elegans develops reproductively or arrests at the dauer larval stage. We examined whether neurotransmitters act in the dauer entry or recovery pathways. Muscarinic agonists promote recovery from dauer arrest induced by pheromone as well as by mutations in the TGF-beta pathway. Dauer recovery i...

متن کامل

Regulation of Dauer formation by O-GlcNAcylation in Caenorhabditis elegans.

Modification of proteins at serine or threonine residues with N-acetylglucosamine, termed O-GlcNAcylation, plays an important role in most eukaryotic cells. To understand the molecular mechanism by which O-GlcNAcylation regulates the entry of Caenorhabditis elegans into the non-aging dauer state, we performed proteomic studies using two mutant strains: the O-GlcNAc transferase-deficient ogt-1(o...

متن کامل

Genetic analysis of dauer formation in Caenorhabditis briggsae.

Molecular changes that underlie evolutionary changes in behavior and physiology are not well understood. Dauer formation in Caenorhabditis elegans is a temperature-sensitive process controlled through a network of signaling pathways associated with sensory neurons and is potentially an excellent system in which to investigate molecular changes in neuronal function during evolution. To begin to ...

متن کامل

A pheromone influences larval development in the nematode Caenorhabditis elegans.

A Caenorhabditis-specific pheromone and the food supply influence both entry into and exit from a developmentally arrested juvenile stage called the dauer larva. The pheromone increases the frequency of dauer larva formation and inhibits recovery but does not affect adult behavior such as chemotaxis and egg laying. The fatty acid--like pheromone has been partially purified and characterized by ...

متن کامل

Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans.

Dauer larva formation in Caenorhabditis elegans is controlled by chemosensory cells that respond to environmental cues. Genetic interactions among mutations in 23 genes that affect dauer larva formation were investigated. Mutations in seven genes that cause constitutive dauer formation, and mutations in 16 genes that either block dauer formation or result in the formation of abnormal dauers, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2014